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The Projective Hilbert Space as a Classical Phase
Space for Nonrelativistic Quantum Dynamics

Igor Bjelaković1 and Werner Stulpe2,3

The projective Hilbert space carries a natural symplectic structure which enables one
to reformulate quantum dynamics as a classical Hamiltonian one.

KEY WORDS: quantum dynamics; projective Hilbert space; symplectic structure;
phase space

PACS : 03.65.Ta, 02.40.Yy, 45.20.Jj.

1. INTRODUCTION

The modern differential geometric approach to Hamiltonian mechanics is
based on a symplectic manifold (M,ω), where ω is a closed (strongly) nondegen-
erate 2-form on a (possibly infinite-dimensional) differentiable manifold M . Given
a Hamiltonian function H on the phase space M , i.e., a sufficiently differentiable
function on M that characterizes the mechanical system, the Hamiltonian vector
field XH is determined by

ω(XH, . ) = dH, (1)

and the integral curves γ of the differential equation

ẋ = XH (x), (2)

x = γ (t), describe the time development of the classical Hamiltonian system.
As is well known, ordinary quantum dynamics looks completely different.

The phase space M is replaced by a (complex separable) Hilbert space H and the
Hamiltonian function by a (generally unbounded) self-adjoint operator H acting
in H. The time development of quantum systems is given by the one-parameter
group {e−iH t }t∈R of unitary operators; a pure quantum state ψ ∈ H, ‖ψ‖ = 1,
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develops according to

ψt = e−iH tψ (3)

which can be reformulated in terms of the Schrödinger equation

ψ̇t = −iHψt . (4)

More precisely, pure quantum states are described by equivalence classes [ψ] of
unit vectors ψ ∈ H, where two unit vectors are equivalent if they differ by a phase
factor. Correspondingly, the time development �t ([ψ]) of the state [ψ] is given
by

�t ([ψ]) = [e−iH tψ]. (5)

Whereas Eqs. (3) and (4) are essentially equivalent (up to domain questions), (5)
and (3), resp., (5) and (4), are no longer equivalent; in fact, ψt can contain a
time-dependent phase factor.

The set of the equivalence classes [ψ] is called the projective Hilbert space
P(H); P(H) can be equipped with a symplectic structure and can be considered as
a (generally infinite-dimensional) classical phase space. The pure quantum states
[ψ] are the points of the phase space P(H), and their developments in time are
curves γ in P(H):

γ (t) := �t ([ψ]) = [e−iH tψ].

We are going to show that these curves γ are the solutions of a differential
equation of the form (2) where XH is again a Hamiltonian vector field; XH is
determined by (1) where ω is the symplectic form of P(H) and the Hamiltonian
function is closely related to the Hamiltonian operator. Furthermore, the map
� : P(H) × R → P(H), �([ψ], t) := �t ([ψ]) = [e−iH tψ], is a smooth Hamil-
tonian flow on P(H). Note that this way we obtain a nonlinear reformulation of
quantum dynamics which is usually formulated in linear terms closely related to
the Schrödinger equation.

2. THE SYMPLECTIC STRUCTURE OF P(H)

The elements of the projective Hilbert space P(H) are equivalence classes
[ψ] of vectors of H where it is not necessary to consider ψ as a unit vector.
More precisely, call two vectors of H∗ := H \ {0} equivalent if they differ by any
complex factor, and define P(H) to be the set of the corresponding equivalence
classes. Using the canonical projection π : H∗ → P(H), π (ψ) := [ψ], we can
equip P(H) with a topology by calling a set O ∈ P(H) open if π−1(O) ⊆ H∗

is open. This way P(H) becomes a second countable Hausdorff space and π an
open continuous mapping (cf., e.g., Bjelaković, 2001). There are other possibilities
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for the introduction of the topology of P(H) (Bjelaković, 2001; Bugajski, 1994;
Stulpe and Swat, 2001); in this context it turns out that the topology is metrizable
and P(H) can be considered a separable complete metric space.

To make P(H) a differentiable manifold, we now introduce an atlas of local
charts (Uφ, fφ) on P(H) (cf. Klingenberg, 1982). Let S := {φ ∈ H | ‖φ‖ = 1}
be the unit sphere of H and {φ}⊥ the orthocomplement of a vector φ ∈ S. For
every unit vector φ ∈ S, consider the open set Uφ := {[ψ] ∈ P(H) | 〈ψ |φ〉 
= 0}
and define a bijective map fφ : Uφ → {φ}⊥ according to

ξ = fφ([ψ]) := 1

〈φ|ψ〉ψ − φ. (6)

The vectors ξ ∈ {φ}⊥ characterize the rays [ψ] nonorthogonal to φ; geometrically,
they correspond to the intersection points of the rays determined by ψ with the
hyperplane φ + {φ}⊥ = {χ ∈ H | 〈φ|χ〉 = 1}. The inverse maps f −1

φ are given by

[ψ] = f −1
φ (ξ ) = [φ + ξ ] = π (φ + ξ );

since the projection π is open and continuous, the maps fφ are homeomorphisms.
The open sets Uφ cover P(H). For any φ1, φ2 ∈ S, the transition maps fφ2 ◦ f −1

φ1

read

(
fφ2 ◦ f −1

φ1

)
(ξ ) = φ1 + ξ

〈φ2|φ1 + ξ 〉 − φ2 (7)

where ξ ∈ fφ1 (Uφ1 ∩ Uφ2 ).
Considering the complex Hilbert space H as a real vector space and decom-

posing the scalar product into its real and imaginary part,

〈φ | ψ〉 = h(φ,ψ) + is(φ,ψ), (8)

we obtain a real scalar product h and a strong symplectic form s on (H, R). Note
that ‖ψ‖2 = 〈ψ |ψ〉 = h(ψ,ψ) and that s(φ,ψ) = h(iφ, ψ) (〈 . | . 〉 being linear in
the second argument). The form s is skew-symmetric and strongly nondegenerate,
the latter meaning that the bounded linear map I : H → H′, (I (φ))(ψ) := s(φ,ψ)
is an isomorphism between (H, R) and its real dual H′.

Considering the subspaces {φ}⊥ also as real Hilbert spaces and observing
that, according to (7), the transition maps are obviously infinitely differentiable,
we obtain the following result: By means of the atlas {(Uφ, fφ)}φ∈S , the projective
Hilbert space P(H) becomes a real C∞ manifold modeled over the Hilbert spaces
({φ}⊥, R) which is in general infinite-dimensional.

The canonical projection π : H∗ → P(H) becomes a C∞ map, and the tan-
gent map Tψπ of π at ψ is defined, Tψπ : TψH∗ → T[ψ]P(H). Identifying TψH∗

with (H, R), and using a local chart (Uφ, fφ), 〈φ|ψ〉 
= 0, we represent π by
fφ ◦ π : π−1(Uφ) → {φ}⊥ and Tψπ by the differential Dψ (fφ ◦ π ) : H → {φ}⊥.
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From (fφ ◦ π )(ψ) = fφ([ψ]) and Eq. (6) it follows that

Dψ (fφ ◦ π )v = − 〈φ|v〉
〈φ|ψ〉2

ψ + 1

〈φ|ψ〉v (9)

where v ∈ H. Moreover, we have the following lemma.

Lemma 2.1.

(a) For each ψ ∈ H∗, the tangent map Tψπ : H → T[ψ]P(H) is surjective
and Ker Tψπ = Cψ .

(b) The restriction Tψπ |{ψ}⊥ : {ψ}⊥ → T[ψ]P(H) is a continuous isomor-
phism ({ψ}⊥ being the orthocomplement of ψ w.r.t. the complex scalar
product). In particular, Tψπ

∣∣
{ψ}⊥ is bijective.

Proof: The tangent map Tψπ can be characterized by Dψ (fφ ◦ π ) where fur-
thermore we can choose φ = ψ

‖ψ‖ . Eq. (9) then implies

Dψ (fφ ◦ π )v = 1

‖ψ‖
(

−
〈

ψ

‖ψ‖
∣∣∣∣ v

〉
ψ

‖ψ‖ + v

)
= 1

‖ψ‖
(
I − P[ψ]

)
v

where v ∈ H, I is the unit operator on H, and P[ψ] the orthogonal projection onto
the subspace Cψ = [ψ] ∪ {0}. Consequently,

Dψ (fφ ◦ π )v = 1

‖ψ‖P{ψ}⊥v (10)

where P{ψ}⊥ is the orthogonal projection onto the orthocomplement {ψ}⊥ of
ψ . From (10) we conclude that Dψ (fφ ◦ π ) : H → {ψ}⊥ is surjective and that
Ker Dψ (fφ ◦ π ) = Cψ . Hence, Tψπ is also surjective and Ker Tψπ = Cψ .

Because H = Cψ ⊕ {ψ}⊥ it follows that the restriction Tψπ |{ψ}⊥ is a linear
isomorphism. Moreover, since the tangent space T[ψ]P(H) inherits the topology
from every modeling Hilbert space {φ}⊥, 〈φ|ψ〉 
= 0, Tψπ |{ψ}⊥ is a continuous
isomorphism. �

We remark that, according to the lemma, π is a surjective submersion; i.e., π

is surjective, for each ψ ∈ H∗, Tψπ is surjective, and Ker Tψπ has a closed
complement. In the following, we use the abbreviation αψ := Tψπ |{ψ}⊥ .

In terms of a local chart (Uφ, fφ), 〈φ|ψ〉 
= 0, αψ is represented by
Dψ (fφ ◦ π )

∣∣
{ψ}⊥ ; the latter is given by (9) where v ∈ {ψ}⊥ and Dψ (fφ ◦ π )v ∈

{φ}⊥. Let ξ ∈ {φ}⊥ and

v := 〈φ|ψ〉P{ψ}⊥ξ.
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We have v ∈ {ψ}⊥ and, because ξ ∈ {φ}⊥,

Dψ (fφ ◦ π )v = −〈φ|(I − P[ψ])ξ 〉
〈φ|ψ〉 ψ + (

I − P[ψ]
)
ξ

=
〈

ψ

‖ψ‖
∣∣ξ 〉〈

φ
∣∣ ψ

‖ψ‖
〉

〈φ|ψ〉 ψ + (
I − P[ψ]

)
ξ

= P[ψ]ξ + (
I − P[ψ]

)
ξ

= ξ.

Since Dψ (fφ ◦ π )|{ψ}⊥ represents αψ and is consequently bijective, we obtain

(
Dψ (fφ ◦ π )|{ψ}⊥

)−1
ξ = v = 〈φ|ψ〉P{ψ}⊥ξ (11)

where ξ ∈ {φ}⊥. Equation (11) gives a representation of α−1
ψ .

For each [ψ] ∈ P(H), we define a skew-symmetric bilinear form on
T[ψ]P(H) × T[ψ]P(H) according to

ω[ψ](V,W ) := 2

‖ψ‖2
s
(
α−1

ψ (V ), α−1
ψ (W )

)
(12)

where s is given by (8) (for ideas related to the introduction of ω[ψ], cf. Berndt,
1998; Klingenberg, 1982). We have to show that ω[ψ] is well-defined, i.e., does
not depend on the representative ψ ∈ H∗. Let V = αψ (v), v ∈ {ψ}⊥, and let γ be
a smooth curve in H∗ satisfying γ (0) = ψ and γ̇ (0) = v. Since π ◦ λγ = π ◦ γ

for every λ ∈ C, it follows that

V = αψ (v) = (Tψπ )v = d

dt
π (γ (t))

∣∣∣∣
t=0

= d

dt
π (λγ (t))

∣∣∣∣
t=0

= (Tλψπ )(λv) = αλψ (λv);

i.e., V = αψ (v) = αλψ (λv). In consequence, α−1
ψ (V ) = v and α−1

λψ (V ) = λv, and
we finally obtain

2

‖λψ‖2
s
(
α−1

λψ (V ), α−1
λψ (W )

) = 2

|λ|2‖ψ‖2
s
(
λα−1

ψ (V ), λα−1
ψ (W )

)

= 2

|λ|2‖ψ‖2
Im

〈
λα−1

ψ (V ), λα−1
ψ (W )

〉

= 2

‖ψ‖2
s
(
α−1

ψ (V ), α−1
ψ (W )

)
,

showing that ω[ψ] is well-defined. By the properties of s (restricted to {ψ}⊥ ×
{ψ}⊥) it is clear that ω[ψ] is a strongly nondegenerate 2-form on T[ψ]P(H).
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Using a local chart (Uφ, fφ) and taking account of (11), ω[ψ] is represented
according to

ω[ψ](V,W ) = 2|〈φ|ψ〉|2
‖ψ‖2

s
(
ξ, P{ψ}⊥η

)
(13)

where ξ, η ∈ {φ}⊥ are the representatives of V,W ∈ T[ψ]P(H). Equation (13)
shows that the 2-form ω on P(H) is smooth. Since ω is also closed (dω = 0), ω

is a strong symplectic form on P(H).

3. QUANTUM DYNAMICS AS A CLASSICAL HAMILTONIAN ONE

Let H be the Hamiltonian operator of a quantum system. For simplicity,
we assume that the self-adjoint operator H is bounded. The dynamics of pure
quantum states [ψ] ∈ P(H) is given by

�([ψ], t) = [e−iH tψ] (14)

where � : P(H) × R → P(H) is a smooth flow on P(H). If � satisfies a differen-
tial equation ẋ = XH (x) where XH is a vector field on P(H) and x = [ψ], resp.,
x = γ (t) = �([ψ], t), it follows from

∂�

∂t
(x, t) = XH (�(x, t))

by setting t = 0 that

XH (x) = ∂�

∂t
(x, 0). (15)

Conversely, if a vector field XH is defined by a flow according to (15), it follows
from

�(x, s + t) = �(�(x, t), s)

by differentiation w.r.t. s and setting s = 0 that

∂�

∂t
(x, t) = ∂�

∂s
(�(x, t), 0),

resp.,

∂�

∂t
(x, t) = XH (�(x, t)).

That is, a smooth flow � satisfies ẋ = XH (x) with XH defined by (15).
Hence, we introduce a vector field XH : P(H) → TP(H) according to

Eqs. (14) and (15). We obtain

XH ([ψ]) : = ∂�

∂t
([ψ], 0) = ∂

∂t
[e−iH tψ]

∣∣∣∣
t=0

= ∂

∂t
π (e−iH tψ)

∣∣∣∣
t=0

= Tψπ (−iHψ).
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By the lemma of the preceding section, we have Ker Tψπ = Cψ and therefore

XH ([ψ]) = Tψπ (−iHψ) = Tψπ

(
−iHψ +

〈
ψ

‖ψ‖
∣∣∣∣ iHψ

〉
ψ

‖ψ‖
)

where −iHψ + 〈 ψ

‖ψ‖ |iHψ〉 ψ

‖ψ‖ ∈ {ψ}⊥. In consequence,

XH ([ψ]) = αψ

(
−iHψ + i〈ψ |Hψ〉

‖ψ‖2
ψ

)

and

α−1
ψ (XH ([ψ])) = −iHψ + i〈ψ |Hψ〉

‖ψ‖2
ψ.

Using the definition (12) of the symplectic form ω, taking any tangent vector
W ∈ T[ψ]P(H), and writing W = αψ (w), w ∈ {ψ}⊥, we obtain

ω[ψ](XH ([ψ]),W ) = 2

‖ψ‖2
s
(
α−1

ψ (XH ([ψ])), α−1
ψ (W )

)

= 2

‖ψ‖2
s

(
−iHψ + i〈ψ |Hψ〉

‖ψ‖2
ψ,w

)
.

From s(iψ,w) = Im 〈iψ |w〉 = 0 it follows that

ω[ψ](XH ([ψ]),W ) = 2

‖ψ‖2
s(−iHψ,w);

i.e.,

ω[ψ](XH ([ψ]),W ) = 2

‖ψ‖2
h(Hψ,w). (16)

Now we consider the expectation valued function 〈H 〉,

〈H 〉([ψ]) := 〈ψ |Hψ〉
‖ψ‖2

= (〈H 〉 ◦ π )(ψ)

where [ψ] ∈ P(H) and ψ ∈ H∗. Taking again any tangent vector W = αψ (w) ∈
T[ψ]P(H), w ∈ {ψ}⊥, the differential of 〈H 〉 is given by

d〈H 〉([ψ])W = d〈H 〉(π (ψ))(αψ (w)) = d〈H 〉(π (ψ))(Tψπ )w

= d(〈H 〉 ◦ π )(ψ)w

= 〈w|Hψ〉 + 〈ψ |Hw〉
‖ψ‖2

− 〈ψ |Hψ〉(〈w|ψ〉 + 〈ψ |w〉)
‖ψ‖4

;

i.e., because H = H ∗ and 〈w|ψ〉 = 0,

d〈H 〉([ψ])W = 2

‖ψ‖2
h(Hψ,w). (17)
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Comparing Eqs. (16) and (17), we conclude that

ω[ψ](XH ([ψ]), . ) = d〈H 〉([ψ]) (18)

for all [ψ] ∈ P(H) (cf. Eq. (1)); that is, XH is the Hamiltonian vector field
corresponding to the Hamiltonian function 〈H 〉 : P(H) → R. By construction of
XH , the time development γ of a quantum state [ψ],

γ (t) = �([ψ], t) = [e−iH tψ], (19)

satisfies the differential equation

γ̇ (t) = XH (γ (t)) (20)

(cf. Eq. (2)) and is uniquely determined by the initial condition γ (0) = [ψ]. Thus,
for bounded Hamiltonian operators, we have achieved a classical Hamiltonian
reformulation of quantum dynamics.

Clearly, the Hamiltonian H is in general an unbounded self-adjoint operator.
We briefly indicate how our result, summarized by Eqs. (18)–(20), can be trans-
ferred to the unbounded case. If H is an unbounded self-adjoint operator, then its
domain DH can be made a Hilbert space by means of the scalar product

〈φ | ψ〉H := 〈φ | ψ〉 + 〈Hφ | Hψ〉,
φ, ψ ∈ DH . The induced norm ‖ . ‖H is equivalent to the graph norm and H :
(DH, ‖ . ‖H ) → (H, ‖ . ‖) becomes a bounded operator. The projective Hilbert
space P(DH ) is, on the one hand, dense in P(H) and, on the other hand, by means
of the new topology induced by (DH, ‖ . ‖H ) itself a differentiable manifold;
in fact, P(DH ) is a so-called manifold domain (for this concept, cf. Chernoff
and Marsden, 1974). Restricting the symplectic form ω to P(DH ), P(DH ) is
equipped with a symplectic structure such that the flow of the Hamiltonian vector
field determined by the Hamiltonian function [ψ] �→ 〈H 〉([ψ]) := 〈ψ |Hψ〉

‖ψ‖2 , [ψ] ∈
P(DH ), coincides with the time development of the states [ψ] according to the
Schrödinger equation.

We further remark that, for a unitary operator U , the mapping FU : P(H) →
P(H), FU ([ψ]) := [Uψ], preserves the symplectic form ω; i.e., FU is a canonical
transformation. This link between unitary operators and canonical transformations
enables one to discuss the action of symmetry groups on quantum states in terms
of the symplectic manifold P(H) and thus confirms its interpretation as a phase
space.

Our result (18)–(20) was already derived by Cirelli and Lanzavecchia (1984)
(cf. also Cirelli et al., 1990). They used essentially the geometry of the complex
Kähler manifolds, whereas our derivation is based on the conception of P(H) as
a real manifold and crucially on the lemma of Section 2. For this and some other
reasons we think that our approach is closer to the usual conception of a classical
phase space. Finally, our reformulation of quantum dynamics on the phase space
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P(H) supplements the results on the reformulation of quantum probability as a
reduced classical fuzzy probability theory on P(H) as given in Beltrametti and
Bugajski (1995) or in Stulpe and Swat (2001).
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